Vehicle Data Acquisition Through Alternative Technologies

Troy M. Goldhammer
Chief Operating Officer
EJ Ward Inc.
Not Everything That Counts Can Be Counted

and

Not Everything that can be Counted, Counts

Albert Einstein
Agenda

• Acquire a broad understanding of the fleet technology ecosystem

• Recognize opportunities for leveraging existing systems for data acquisition, reporting and action

• Discuss technology roadmap framework for fleet asset management
Fleet Asset Management has several focus areas and many Processes and Tools...

<table>
<thead>
<tr>
<th>Fleet Asset Management</th>
<th>Key Areas of Focus</th>
<th>Processes</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Performance</td>
<td>• Fuel Management</td>
<td>• ERP</td>
</tr>
<tr>
<td></td>
<td>• Optimization</td>
<td>• Route Optimization and Scheduling</td>
<td>• Fleet Management Information Systems</td>
</tr>
<tr>
<td></td>
<td>• Utilization</td>
<td>• Vehicle Acquisition / Disposal</td>
<td>• Fuel Management</td>
</tr>
<tr>
<td></td>
<td>• Risk Management</td>
<td>• Depreciation</td>
<td>• AVL and GPS Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dispatching</td>
<td>• Business Intelligence Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accident Management</td>
<td>• Enterprise Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replacement Planning</td>
<td>• Report Writers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Driver Training</td>
<td>• Document Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Procurement</td>
<td>• RFID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vehicle Utilization</td>
<td>• HID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mileage Capture / Reimbursement</td>
<td>• Etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vehicle Specification / Selection</td>
<td></td>
</tr>
</tbody>
</table>
There are several emerging trends for Data Acquisition for Fleet Asset Management

<table>
<thead>
<tr>
<th>Vehicle Data Availability</th>
<th>Today</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Vehicle sensors are available, but access to the data is often</td>
<td>• New models continually provide additional sensors and information</td>
</tr>
<tr>
<td></td>
<td>proprietary or difficult to interpret</td>
<td>across vehicle networks</td>
</tr>
<tr>
<td></td>
<td>• Data is non-standardized in Light Duty and in some instances</td>
<td>• Standardization is happening, but the OEM retains protocol</td>
</tr>
<tr>
<td></td>
<td>Heavy Duty Vehicles</td>
<td>to manage internal vehicle network.</td>
</tr>
<tr>
<td></td>
<td>• Discrete sensors readily available in after market</td>
<td></td>
</tr>
<tr>
<td>Wireless Technology</td>
<td>• Private Networks (e.g. Fuel Management Systems)</td>
<td>• Private Network bandwidth and adoption</td>
</tr>
<tr>
<td></td>
<td>• 802.11xx</td>
<td>• WiMax introduction</td>
</tr>
<tr>
<td></td>
<td>• Bluetooth</td>
<td>• Broadband services</td>
</tr>
<tr>
<td></td>
<td>• Cellular</td>
<td>• ASP models</td>
</tr>
<tr>
<td></td>
<td>• RFID</td>
<td></td>
</tr>
<tr>
<td>Telematics</td>
<td>• Internal Vehicle Electronics Integration</td>
<td>• Predictive and Prognostic Maintenance</td>
</tr>
<tr>
<td></td>
<td>• Preventive Maintenance</td>
<td>• Driver Behavior Monitoring</td>
</tr>
<tr>
<td></td>
<td>• Tracking and AVL</td>
<td>• Optimization and Utilization</td>
</tr>
<tr>
<td></td>
<td>• Communications</td>
<td></td>
</tr>
</tbody>
</table>
Predictive Maintenance

Input
- Vehicle Data Availability
- Accuracy
- Reliability
- Predictability
- System Integration

Output Goals
- Reduced Maintenance Cost
- Greater vehicle uptime performance
- Reduced Road Calls
- Increased Customer Satisfaction
- Risk Reduction

The Challenge – Identifying, collecting and reporting actionable information for Predictive Maintenance
While conventional time-based or rule-based vehicle maintenance strategies can serve as a starting point...

…It is anticipated that more complete vehicle information can be used to infer more intelligent and cost effective maintenance schedules.
Ward created the first OBD II / J1708 device for vehicle data capture and fueling automation…

Benefits
• Easy to install
• 100% Accurate Odometer Engine Hours
• Fully Automated Fueling = No Manual Entry
• Green Fleet Management

Additional Fleet Data
• Idle Time
• Engine Time
• Fuel Consumed
• Engine Oil Level
• PTO Time
• Diagnostic Trouble Codes
• VIN
• Stop Idle Time
• Max Speed
• + Many others…

Reliable
• Thousands of implementations
• Solid-State design

…and can be used as the data acquisition device for vehicle faults prior to failure
Asset Tracking

Common Features Today

- Tracking
- Reporting
- Idle Reduction
- Risk Mitigation
- Speeding
- After Hour Violations
- Geofence Violations

Enhanced Capabilities

- Driver Metrics and Performance
- Risk Profile Reduction
 - Insurance Premium Optimization
- Route and Schedule Optimization
- Accident Reduction
- Green House Gas Reductions
- Fleet Operating Expense Reduction
- Automated Exception Reporting
- Universal Fuel Management
- Enterprise Information Integration
- Navigation
- Traffic & Weather Info

The Challenge – Identifying, collecting and reporting actionable information for Predictive Maintenance
Fuel Management System for data acquisition...

Common Features Today

• Fuel Access Control
• Multiple Media Authorization
• Fuel Accountability
• Lubricant Accountability
• Employee Validation
• Vehicle Validation
• Odometer/Meter Capture
• Tank Level Interface
• Networking, Modem and Wireless Connectivity

Enhanced Capabilities

• Business Process Enforcement
• Data Acquisition Device for Telematics
• Distributed Network Interface
• Enterprise Information Integration

...Leveraging the Fuel Management System for enhanced capabilities brings a greater ROI to both new and future investments
WARD FLEET ASSET MANAGEMENT SYSTEM

OVERVIEW

1. Passive GPS + CANceiver Data via FCT Modem
2. Passive GPS + CANceiver Data via FCT TCP/IP
3. Real time GPS Download through cellular network

GPS and CANceiver DATA

Tank Level Sensing

In-Ground or Above Ground Tank

Ward FCT

Cell Tower

Internet

WARD AFMS

TCP/IP Connection

Network

Optional (Customer Hosted)

E/W Hosted GPS Application

Ward Track (GPS)

Enterprise Resources

- Fleet Maintenance
- ERP
- GIS System
- Other Applications

SQL or Oracle

SQL
Passive vs. Real Time Data Acquisition

<table>
<thead>
<tr>
<th>Pros</th>
<th>Passive</th>
<th>Real Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• High Data Bandwidth</td>
<td>• Near real time access to data</td>
</tr>
<tr>
<td></td>
<td>• Increased data elements and frequency</td>
<td>• 2-way communication and exchange</td>
</tr>
<tr>
<td></td>
<td>• Low or No Operating Expenses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Secure Network</td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>• After the fact data delivery</td>
<td>• Annual Operating Expenses can be significant depending on bandwidth</td>
</tr>
<tr>
<td></td>
<td>• No 2-way communication real time</td>
<td>required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires internal staff to monitor activity in real time to achieve returns</td>
</tr>
</tbody>
</table>
Case Example: 70/30 Passive vs. Active tracking for 1300 vehicle fleet

Real Time vs. Ward Passive GPS

100% Real Time: $1,489,756
70/30 Real Time / Passive: $1,460,018
Annual Savings: $29,738

Implementation:
$100,000
$200,000
$300,000
$400,000
$500,000
$600,000
$700,000
$800,000
$900,000
$1,000,000
$1,100,000
$1,200,000
$1,300,000
$1,400,000
$1,500,000
$1,600,000

Annual Recurring:
$569,560
$228,668
$100,000
Technology Strategic Planning Framework
Strategic Planning Framework

Baseline

Assess Current State
- Develop IT Baseline (Fact base includes costs, key processes, FTEs, infra & app maps, KPIs, org views, etc…)
- Define Targeted IT Strategy Hypotheses (efficiency considerations, IT effectiveness)
- Conduct interview campaign for Business Demand Drivers – shared and by business unit

Vision

Establish a Vision
- Define Vision Statement
- Develop IT Guiding Principles – overarching and by defined areas to address needs of mature and maturing businesses:
 - Applications
 - Infrastructure
 - People
 - Processes
 - Governance

Prioritize

Identify Priority Areas & Conduct Deep Dives
- Compare to Best Practices (processes, service levels, skills, costs, capabilities, etc.)
- Opportunities sizing to improve efficiency & effectiveness in defined areas
- Capability Gap Analysis vs. current state
- Perform Selected Deep Dives (as needed)

Plan

Establish Overall Plan
- Prioritized set of improvement opportunities
- Demand Management
- IT Governance Model
- Action Plan

Activities

Understand & Align with Business Priorities
- IT Strategy Hypotheses and Baseline Discussion
- IT Vision and Preliminary Opportunity Discussion
- Final Recommendations
Opportunities for applications rationalization should be made when evaluating alternative technologies

Benefits of Portfolio Rationalization
- Reduced support & maintenance costs
- Decreased system complexities for both users and IT support staff
- Elimination of redundant and/or obsolete functionality
- Implementation of common, consistent support infrastructure
- Improved span of control and work flexibility

Inventory of Applications

<table>
<thead>
<tr>
<th>Level of Utility</th>
<th>Legacy</th>
<th>Modern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Retire end-of-life</td>
<td>Eliminate Redundant</td>
</tr>
<tr>
<td>High</td>
<td>Renovate Worthwhile</td>
<td>Consider Enhancement</td>
</tr>
</tbody>
</table>

Portfolio Strategy Inputs
- Retain
- Eliminate Redundant
- Renovate Worthwhile
- Consider Enhancement

<table>
<thead>
<tr>
<th>Business Unit 1</th>
<th>Business Unit 2</th>
<th>Business Unit 3</th>
<th>Business Unit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Business Unit 1}]</td>
<td>[\text{Business Unit 2}]</td>
<td>[\text{Business Unit 3}]</td>
<td>[\text{Business Unit 4}]</td>
</tr>
</tbody>
</table>
An integrated framework for evaluating technology will assist in defending business case requirements...

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Definition / Subcategories</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Importance</td>
<td>40%</td>
<td>- Competitive Edge
- Value to customer
- Window of Opportunity
- Sustainable
- Fleet Technology Roadmap</td>
<td>Very Low 80 Points</td>
</tr>
<tr>
<td>Initiative Cost</td>
<td>15%</td>
<td>- Cost of Implementing</td>
<td>Very High >$1M 30 Points</td>
</tr>
<tr>
<td>NPV</td>
<td>15%</td>
<td>- Present value of the net benefits (3-year)</td>
<td>Very Low NPV<3500K 30 Points</td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>10%</td>
<td>- Implementation time period (conception to deployment)</td>
<td>Very Long >16 Months 20 Points</td>
</tr>
<tr>
<td>Interdependencies</td>
<td>10%</td>
<td>- Degree to which the initiative is dependent on other initiatives</td>
<td>Very Interdependent 20 Points</td>
</tr>
<tr>
<td>Risk/Complexity to Implement</td>
<td>10%</td>
<td>- Operational Risk
- Technology Risk</td>
<td>Very Large Alpha 20 Points</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
<td>Range for Initiative Total Scores: 200 - 1,000 Points</td>
</tr>
</tbody>
</table>
Conclusions

• Emerging Trends for vehicle and asset data continue to increase
• Predictive Maintenance in concert with Preventative Maintenance continue to show promise for future adoption
• Opportunity exists to leverage existing and new technology for enhanced value and ROI
• Fleet Asset Management remains and will continue to drive requirements for technology enhancements
Troy Goldhammer
Chief Operating Officer

EJ Ward Inc.

www.ejward.com
800-580-WARD
tgoldhammer@ejward.com